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It is impossible to distinguish by means of a least-squares analysis between a centrosymmetric structure 
and a corresponding non-centrosymmetric one by simple expansion of the set of parameters over the qut.s- 
tionable inversion centre. 

In many cases the space group of a crystal is not uniquely 
defined by the systematically absent reflexions. In solving 
the structure of such a crystal from X-ray diffraction data 
it is often convenient to start from the simplifying assump- 
tion that the structure is centrosymmetric, but once a rea- 
sonable trial structure has been found on this basis the 
question arises as to whether the actual structure is centro- 
symmetric or not. If one wishes to answer this question 
by least-squares analysis of the diffraction data, one might 
decide to simply expand the trial set of parameters over 
the questionable inversion centre and carry out the least- 
squares refinement in the corresponding non-centrosym- 
metric space group. This procedure is easily shown to be 
invalid. 

Since the structure factor derivatives with respect to 
pairs of centrosymmetrically related positional parameters 
are equal in magnitude and have opposite sign, while 
derivatives with respect to corresponding pairs of tern- 

perature factor parameters are equal, the normal equations 
are identical in pairs and the resulting normal equations 
matrix becomes singular. In such a case, full-matrix refine- 
ment would lead to catastrophic results, while diagonal or 
block-diagonal refinement is clearly equivalent to refine- 
ment in the originally assumed centrosymmetric space 
group. Small, random shifts may be applied to the centro- 
symmetric set of parameters so as to make it only ap- 
proximately centrosymmetric, but then the occurrence of 
an ill-conditioned set of normal equations has to be reck- 
oned with. Diamond (1958) has shown how an eigenvalue- 
eigenvector technique may be applied to obtain the maxi- 
mum amount  of information in similar cases. 
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The generalized Onsager relations applicable to transport property tensors for magnetic and non-magnetic 
crystals in the presence or absence of an external magnetic field were given by Kleiner. In this paper it is 
shown that the symmetry-restricted forms of the thermogalvanomagnetic property tensors conforming to 
Kleiner's prescription can be obtained from the forms of the polar and axial tensors appropriate to the 32 
classical point groups, making use of the rules given by Birss fol the equilibrium magnetic property tensors. 

We consider the effect of magnetic symmetry of a crystal 
on its thermogalvanomagnetic (TGM) properties. The elec- 
tric current density J~, the heat current density q~, the elec- 
tric field E~ and the negative temperature gradient G~ in a 
crystal are related as shown in the phenomenological equa- 
tions (1). The usual summation convention has been 
adopted throughout this paper. 

E~ = o~JJ: + ~jG~ , 

qt - J~ ~ = - fl~JJ~ + KijGj . (1) 
e 

is the chemical potential of the electrons, e is the elec- 
tronic charge, o~j is the electrical resistivity, i¢~j the thermal 
conductivity, e~j the thermoelectric power and p~j the prop- 
erty inverse to 0~. 

In the presence of an external magnetic field, the tensors 
0m ~J, ,Sij and ic~j can be expanded as power series in the 
field components Ht as in (2). 

0~j(H) = 0~J + o~j~H~ + o~mH~H~ + . . .  (2) 

The tensors of various ranks on the right-hand side of 
(2) define the TGM tensors. H~ is an axial vector whereas 
J~, q~, E~ and G~ are polar vectors. Consequently the TGM 
tensors of even rank are polar while those of an odd rank 
are axial. 

According to Kleiner (1966) the space-time symmetry of 
a crystal, in which these properties are observed, imposes 
the relations (3) and (4) between the corresponding tensor 
components. These relations which take account of the 
space-time symmetry of the crystal are the appropriate 
generalizations of the classical Onsager relations. 

A pure rotation in space is represented by a 3 x 3 orthog- 
onal matrix IIR~JII. The space-time operation of a pure 
rotation followed by time-invariance is denoted by R, and 
that followed by time-reversal by R. A rotation-inversion 
followed by time-invariance is denoted by R while that fol- 

lowed by time-reversal is denoted by R. 

For R or R: 0 ~ e z . . . =  R~mR~nR~vRzq...O,n,~m. (3a) 
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